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TG/ 30-02

FOREWORD

A priucipal objective of the Guidance System Error Study Program, GContract
NAS8-1138:, is to establish meaningful statistical measures of sysiem performance.
This report presents the results obtailned in fulfiliment of the above osjective.
The investigation was performed by IMSC/HREC for the Astrionics Laboratory of
the George C. Marshall Space Flight Center.
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SUMMARY

Basic concepts of probability theory are briefly reviewed and applicd to
the problem of determining meaningful measures of performance. i'rosedu. s or
computing the equi-probability error volume, its orientation, and .engtis of
the principal semi-~axes are presented. A closed form solution for the prob-
ability parameter associated with the equiprobability ellipsoid is derived.

Computer programs for determining the probability of hitting typical target
windows are formulated. These target windows are three dimensional where the
dimensions may apply to either the marginal distribution of position errors
or the marzinal distribution of velocity errors.

Finally, simplified statistical measures of performance are discussed.

An equivalent spherical probable error is defined and a conservative approxima-
tion to the generalized variance is derived.
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1.0 INTRODUCTLON

One objcctive in the formulation of the Guidance Error Study (Contract
NASE-11381) is to determine meaningful statistical measures of vehicle per-
formance. Performance errors consist of position and velocity deviations
from a nooinal trajectory; these errors are due to hardware error sources in
the vehicie's guidance system.

The central program of the guidance error computer program (duvelsped

under contract NAS8-11381) determines the covariances and mean values of the
performance errors. Additional measures of vehicle performance may be de-
termined on the basis of this data. These additional measures are more meaning-
ful than the individual performance errors since they directly describe mission
success criteria. A familiar example of a meaningful statistical measure that
m&, be obtained from knowledge of the covariances of position errors is the
¢+ . ~ular probable error (CPE). The CPE is the radius of a circle for which

.« e 1s a 50 percent probability that a ballistic missile will impaect within
L€ clrele.

A simple extension of the CPE concept would be a spherical probable error
(SP+), in which three dimensions are considered. Another useful error volume
measure, that may be obtained from the covariance matrix of errors, is the
equiprobability ellipsoid. This is a surface for which all orientations of
the srror vector are equally probable. The volume, orientation, and principle
axes of this ellipsoid, for respective probabilities, are of interest in space
mission studies.
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2.0 BASIC STATISTICAL CONCHPTS

Yerformance errors of a miss:le sysiem are generally discussed on &
probebilistic basis and the concepl of a random experiment is fundamental o
ce ol lishio,c meaningful measures of performunce. Statistical measurements are
actined here as those quantities which describe the degree and character of
vhe randorness. The following discussion is intended as a brief review of
vrci abili .y Lheory as it applies to the statistical measures of vehicle o
formance; & more complete treatment of the theory may be found in Refererces 1
through L.

2.1 Probapility Distributions:

A random experiment is one whose outcome can be predicted only on a
probabilistic basis. It is recalled that if a random experiment is repeated
a large number of times, the results (in the aggregate) tend to exhibit con-
si: cent pr« serties. For example, consider a specific event A which is sometimes
the outcome of an experiment. The ratio of the number of times that A occurs to
th¢ number of times the experiment is repeated is called the frequency ratio
of the event A. With more and more repetitions of the experiment, this frequency
ratio tends toward a constant value P which is the probability that the event
A will occur in a single performance of the experiment.

A guantity which expresses the result of a random experiment is called a
random variable. If X denotes a random variable, then X will assume different
values for each performance of the experiment. A fundamental statistical measure
is vhen the probability P (X = a) that X will assume a given value a, or if X
is a continuous variable, the probability P (a < X =b) that X will assume a
value greater than a but not larger than b. Alternatively one may speak of
cumulative probability, that is the probability P(X = b) that X will assume a
value no larger than b. :

If we know P (X = a) for all permissable values of a, we have the discrete
probability distribution of the variable X. Similarly, if we know P (a< X =b)
for all values of a and b, we have the continuous probability distribution for
the variable X. If we know P (X = b) for all values of b, we have the distribu-
tion function '

F(x)= P(X=x) (2-1)
for the variable X.

In dealing with a continuous random variable, the probability distribution
function f(x) is defined by considering the interval (x, x + dx). The prob-
ability that the variable X will assume a value in the interval (x, x *+ dx)
is written

P(ALX = x +dx) = feodx (2-2)
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probeaility P{n < ¥ £ b) is then computed from the relationshiy

b
P(a<X<b) —‘[ fixodax (2-3)

The distribution functson (frequently called the cumulative probability distri-
bution) is then
x

F(x) = Z:rf‘(ul du (2-L)

s

A typical probabiliity distribution function and the corresporciing cumula-

tive distribution are shown in Figure 2-1 . An obvious property of the prob-
ability distribution function is that it is a non-negative number, i.e.,

fixy >0

Obvious properties of the cumulative distribution function are

O=F(x) =l
F(-=)=0
Flea) =

A physical interpretation can be given f(x) and F(x) by imagining a unit
mass, distributed along a straight line such that the fraction of mass concen-
trated to the left of X = x is equal to F(x). Then the derivative

dF _
—d—;—-f‘("‘) (2‘5)

is ine density of the unit mass at the point x. f£(x) is frequently called the
probability density function of the random variable X.

2.2 Joint Probability Distributions

In many cases the result of a random experiment is not expressed by one
obse.ved quantity, but by a certain number of simultaneously observed quantities.
for example, in the guidance error study, the random experiment involves the
simultaneous occurrence of six random variables - the errors in three components
of position and three components of velocity. In this event, the one-dimensional
concepts are generalized and we speak of the probability that the random variables
X1, Xo, o« . o, le1 will simultaneously belong to the intervals (ay by), (ap, bo),

by,

N (an, respectively. Expressed mathematically

b 5,
P(a, < XSbly“',a')z<X7z-‘Ebn)"'f"ff‘('x.,---'xn) di, ,.ony dwy, (2_6)
2, “a,
where f(x. ., X_) is the joint probability distribution function.

; Koy o
In generaf, tge individual random variables are not independent of one another.
That is  the probability that X; will belong to the interval (a,, bj) will
depend upon the values assumed by all the other random variables in the joint -
discribution. '
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Figure 2-1 "= A Typical Prob...lity Distribution Function
- and the orresu: ding Cumulative Distrib.ion
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A joint distribution function is defined as follows:

E—‘\/x“ 721”" }77) = p(xl éx‘: X:Z 'S:Xz Yy " x??’:éx?l>
X, P (2"7)
:.j'.':[f(x’a.";x&)d'x:)"',dZIL
-] -0

Obvious properties of the joint distribution function are

F‘(ae@’“m,;-w) = |}
F(‘”,XR)"' )7‘7?) = F(x’)-co)"';xn)

=F(')c:,7£z,-°°,'-',7t,,)

The probébility that X, = x; without regard to the values assumed by the
other random variables is called the marginal distribution of Xi and is defined

as
n xi (%] o
Fi(xi)=[duf-ff(x.,---,u,---,xk) dzxyy--,dxp (2-8)

where u is a dummy variable for x;. The marginal frequency function is defined
as follows:

Jrl

| L dF i o «
Fi(x) = cT‘z—(l; ~[~-ff(x',"";7n) ﬁl' C’Z’j (2-9)

where j F 1i.

The concept of marginal distributions is useful in guidance error studies
where one might be interested in position errors without regard for the velocity
errors or vice versa. 1iIn this case the respective marginal distribution would "
involve the joint distribution of only three random variables rather than all
six variables. Studies involving impact dispersions would consider only two
random variables, downrange miss distance and crossrange miss distance; the
third position error would be excluded by the constraint imposed by the earth's
surface.
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Aty

cal two-dimensional vrobability distribution function is showm in
Figure

It is obscrved vhat a vertvical plane cuts this dicuribubion to
form a univariate {conditional) distribution. A conditional distripution
fxi(xj), . # j, is defined by the probability that the variable Xj will assume

a value within the interval (xs:, X; * dx.) on the condition that the variable
Xy assumcs a specified value x;. It shotlid also be observed that the intersec-
tion of . -is surface with a horizontal plane yields an ellipse, with the size
of the ellipse varying with the height of the cut. These are called equi-
probability ellipses. '

If for all values ay, by, 8p, Doy - o -+, ap, b,, the events

al < x, Sb;

a, < Xszz

a, < %, <b,

are independent, then the relationship
Pla, <X, < by, , a5 <Xu =by) = P(a,<XEh,) - - - P(a,<X <b,) (2-10)

is valid. Similar relationships for the distribution function and the frequency
function follow for independent random variables.

Flxi, X2, %) = F (%), Fa (Xg), - =+ Fop (X2)

(2-11)
'F(x') Kzyre,Xp) =ﬁ(7f:), fz.(].’-z),‘ “ ey P (xp)

2.3 Mean Values

The abscissa of the center of gravity of the probability distribution f(x)
constitutes a weighted mean value. This mean value is called the expected value
B(X) of the variable X and is defined as follows:

o

E(x) = fx feor dx (2-12)

-0
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Similarly 'he especw. ¢ value of a functi-n ¥ = ¢(x) is defined os

o

R -~

E;Qs(ﬁ)‘i :fqﬁ{x) feaydx (2-13)

The -cove definition of & mean value is extended directly (o joint distri-
butions, w.ich involve the simuitaneous occurrence of several random variables.
The mean value of the variable Xj is

E(X:) :Jr""[?i F(?(l,xz,“'Xn)dx,',dxg"‘ dx,, (2-1’4.)

Consider a linear function, a X * b. From Equation (2-13) or (2-1L), the
mean value is

E(aX+b) = ab(X) +b (2-15)

Now .et us consider the sum, ¥; + ¥, + . . . * of the random variables in
a joint distribution. From Equation (2-1L), the mean value is

E(x + X;,) = f’f (Xt 4 Xy ) F(X1y o=, X ) d2y - dxyy

(2-16)
= E(X)+E(X2)+--- E(Xp)

It should be noted that these addition rules are valid for mean values, whether
the random variables are independent or not.

2.4 Covariance and Correlation Coefficients

The mean value of a random variable has been defined as a first order
moment of -the probability distribution about the origin. This mean value
provides a measure of the location of the distribution. Other properties of
a distribution may be measured by considering the higher order moments. In
particular, the standard deviation or variance and the covariance provide a
measure of the dispersion of the random variable about its mean value and the
interdependence of the random variables, respectively.

Cons der the second order moment about the origin,

.E(XiXJ)=J['JﬁXpX;F(x”-'w,}n)dx¢-~,dxh (2-17)

If the random variables are independent,
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E(X; X, )i[X;f;(’x;)dw;f?ljf:,'(il’j)cfxi
(2-18)
= E(X1) EQxg)

where f.(x ) and f.(x:) are marginal distributions. This multiplication rule
is anié on'ly when thg random variables are independent.

If the second order moments are computed about the mean values, then the
so-called covariance O x; X 5 is obtained, i.e.,

0-")(523 = E [(Xl‘m:)(XJ"mJ)] (2 19)
'—’-J[-";[(Xi—-m;)(‘kj—mj)f(‘x.,"')l’n)cl XKoo e dxy,

If 1 = j, this central second order moment is called the variance cr§ . The
standard deviation T - is simply the square root of the variance. T%e following
relationship is establifshed from Equation (2-19)

0%, % = E(XiXj) = E(Xi) E(Xp) (2-20)

Correlation coefficients of the wvariables Xi and Xj are defined as follows:

P’X.‘xj = O=i%j / Oxi 0 (2-21)

The correlation coefficients are bounded between -1 and +1 and are equal to 1
for 1 = j. If £ =t 1, there exists a complete linear dependence between the
variables X; and X;. The values of X; and X. will vary in the same sense or

the inverse sense when P = L or ~ = -1, regpectively. Correlation coefficients
provide a measure of the degree of linear dependence between the respective
variables. If A = 0, the variables X; and Xj are completely independent and,
as a result, are uncorrelated.

2.5 Covariance Matrix of Errors

The guidance error study is concerned principally with the errors associated
with posi “on and velocity measurements in an orthogonal reference frame of
cartesian coordinates. The random variables are then the three errors £ ,72 ,¥%
in che sc.lar components of the position measurement and the three errors § ,7 ,¢
in the scalar components of the velocity measurement. The covariance matrix of
errors is then a 6 x 6 array of central, second order moments defined by BEqua-
tion (2-19). This covariance matrix of errors is written
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, -
ez |
Vi Ogy, Cygt: O;; Ois OE—E
2 i
G 9 O;}z; Ty Gy Gy
i
2 .
~ = -?;f;gi.cg_}_ofg;,?;”__%; (2-22)
s _ 1 5
Gs Y 5ot Of Tty Gis
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G5z Tpr O;I: O O; Gy¢
i 2
%5 Gy T Ge Gy G
L i J

4. by “he definition of the covariance, this is a symmetric matrix.

It is observed that the diagonal elements of this covariance matrix are
L2 variances which measure the dispersion of the errors about their mean values,
while the off-diagonal elements are the covariances which measure the inter-
dependence of the random variables. Alternately, this covariance matrix may
be written in a factored form in terms of the standard deviations and correla-
ticn coefficients.

c=[o][P][] (2-22a)

where

0 0 g o 0 0
R - T
(o] =
0 0 6 ¢ 0 o
0 ) 0 0 O; 0

10
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and

R, e Ry Ry R
sl B B By B
| ; Ry Fe
- R B R f%? R
Pos B Boe Por 1 By
R R B P R

- .

~0
rer
o

<
e,

-

Rev .. rin; to the definition of the covariance (2-19) and the correlation
cc .fieieat (2-21), the matrix of correlation coefficients is seen to be sym-
me  ic.

Many guidance error studies may be concerned with position errors without
regard for the velocity error or vice versa. In this case, we consider the
marginal distribution concept as defined in Section 2.2. By employing the
definition of covariance (2-19), and the marginal distribution function (2-9),

£ (E,7.%) [[ FOE78,57,E) dgdy dy

(2-23)

or fz(‘éﬂ?’,i)=ff[f(€;77,t,‘§',’?,i) dy dy dy

-

it may be . shown that the covariance matrix of errors for the marginal distribu-
tion is obtained by simply partitioning the 6 x 6 covariance matrix, Equa-

tion (2~22). For the marginal distribution of position errors without regard
for velocity errors, the covariance matrix is simply the upper left quadrant

of Equation (2-22); for the marginal distribution of velocity errors without
regard for the position errors, the covariance matrix is simply the lower right
quadrant of Equation (2-22).

2.6 Gaussian Probability Distributions

The Gaussian probability distribution, frequently called the normal prob-
abi. ity distribution, is encountered quite often and would generally apply in
the problem at hand regarding performance errors due to error sources in the
guidance hardware. A major reason for its general applicability is stated by
the "Central Limit Theorem". This theorem states that the sum of a large number

11
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oo condes variables s approximat: iy Gavowian distributed regardlecs of the
g woull distributions ol bhe individusi components of the sum.

The sne-dimensional Jaussian nrobability density function is written

. -~ p ‘;
i i ¢ x=piT
.X) e X e
FOO = e exp l 20 % J (2-2l)
woore O wad m deneis L chandard devis i an and mean v : VE .
t%¢ random variable X. ke properties ol . Gaussian densily Junc . .on o a8
follows:

(1) The mode (peak of the probability distribution) calculated by é% = Q,
is located at x = m. dx

. 2 .
(2) The inflection points, calleulated by Q~% % (, are lLocated at
x = td . dx

The n~dimensional Gaussian probability density function, required in the
g. <lance error study, is written

- =________’___________ e _J_""P - =
‘F(Xﬂ) N2 [Corm xp 5 Xp Com 'X—n) (2-25)

where:

Xp is a column vector (xy, Xp, + - ., xh)T of the errors about their
mean values,

T is the row vector,

n
Can is the n x n covariance matrix of errors,
lcnnl is the determinant of the covariance matrix.

If we consider the complete 6~dimensional distribution of position and
velocity errors,

Xe=(ENEERE)T

and Cg¢ is the covariance matrix defined by Equation (2-22). If we are con-

cerned only with the marginal desnity function for position errors without
regard for the velocity errors,

523 = (53771 g)"'

and 0%3 15 simply the upper left quadrant of Equation (2-22). The marginal
density function for the velocity errors is formed in a similar manner.
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This n-dimonsiseral densiby function describes a family of n-dimensional
equiprobuoitit s elln,oids, which are akin to the two-dimensional =quiprobability
ellipses descrived 1u Section 2.2. Each ellipsoid is an equi-probability sur-~
face defined by setiing the cxponcential argument of Equation (2-25) to a con-
stant value co.responding to a particular probability, i.e.,

k =% Coy Xn (2-26)

The -hree-dimens .onal equiprobability ellipsoids, in particui =, - ad
thomselves to usefu: seometric interpretaiion. In this regard we woul. -onsider
the marginal disbtributions either of the position errors X2 or of the velocity
errors x3. oSuch a surface of equal probability, for the marginal distribution
£4(§,7%,%) is shown in Figure 2-3 . It is observed that the origin of the
cartesian coordinates (£,7% ,% ) is coincident with the mean values of the
errors. The directions of the principal axes are not, however, =zligned with
the (5,7 ,¢ ) axis system.

The  roblem of determining the equiprobability ellipsoids and their
o wuntation is treated in subsequent sections. Procedures for obiaining
¢ ter sta Lstical measurements, such as the error volume associated with
ine equiprobability ellipsoid and the probability of errors occurring within
a ~iven zeometrical domain (e.g., a sphere of radius R) are also formulated.

13
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principal axes of the equiprobability
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Y, PROTERTERS OF vl SOVARTANCE MATRIX

As cosented in Section 2.0. “he covariance mabrix of errors is, in
seneral, a0 x 1n oymmetric matrix compoged of n variance teims and n(r - 1)
covariar ¢ terms. The variances, which specifly the dispersion of the dif-
Jooent s ors aboul thedir respective means, are on the main diagousl while the
sovwriance o, which ooecifly the interdependence of the different errors. occupy
%L the ~ J~diarorn. lLocations. "he us 2ulL properties of this w ix - ¢

from its dragonaiisation - a procwgss in wnich all the covariance .erme o.o¢
driven to zero and only the variances remain. These properties wre:

1. The variance terms remaining are called the eigenvalues of the matrix.
- These variances correspond to uncorrelated (independent; errors which
are associated with measurements in a new frame of reference.

2. Corresponding 4o each eigenvalue there is an associated eigenvector.
tach eigenvector element is a direction cosine and the complete matrix
of elgenvectors specifies the orientation of the new axi:c system with
respect to the original frame of reference.

3.. Error volumes, corresponding to specific probability levels, are
obtainable from the covariance matrix. The volume of the equiprob-
ability ellipsoid is directly proportional to the determinant of the
covariance matrix (see page 3li). This determinant, the generalized
variance, is a frequently used figure of merit and is simply the product
of the eigenvalues..

L. The lengths of the semi-axes of the equiprobability ellipsoid are
’ proportional to the eigenvalues; the orientation of the ellipsoidal
error volume is given by the eigenvectors (refer to 2 above).

A brief theoretical discussion concerning the calculation of eigenvalues
and eigenvectors and diagonalization of the covariance matrix will now be
presented followed by two eigenvector computation schemes (algorithms) in the
next section.

The eigenvalues of the covariance matrix G are the characteristic or
latent roots of the matrix found from the polynomial equation:

(O'a_.>\) O;; Of—!
0;5(0—2_70.. . o;;

lc-21 = : (3-1)

U
O
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L oomoule Lo e thoe n A's, not wll off which may be distinct, are founu
« 5o (3=, Ulroe ine covariance matrix of errors is by its construction
always positive vite as well as symmelric, the eigenvalues are all positive
resl pumbers. Gnese cigenvalues aizo satisfy the matrix equation
Cx = XX ;2N (3-2)

whers Xi tv an arbitrary column vector of n elements.

The eigenvectors are the n soiution vectors @. of (3-2) asc...atet weo.on
the n eigervalues Ay Each eigenvector is composed of n elements

{¢i|,¢ia,¢53’ """ ¢in}
and satisfies the orthonormal relatlonship
where §.. is the «ronscker delta. Thus the magnitude of each eigenvector is
w 1.y abd the scalar or dobt product ¢iT $: (1 # j) is zero. This latter result
. ~ows that the c¢igenvectors are linearly independent and mutually orthogonal.
‘ny arbitrary vector in n space can be constructed as a linear combination of

the a eigenvectors. In this respect, the eigenvectors are similar to the
familiiar unit vectors i, J, and k in three space.

The desired diagonalization of the covariance matrix C can now proceed.
We form the eigenvector matrix

¢u ¢21 T ¢m
. ¢m ¢22 e ﬂng |
P py - ¢|3 ﬁzs Tt ¢n3 (3“)4-)

with the eigenvectors as successive columns of §. By virtue of Equation (3-3),

TP
P =
el |

f H]
; —
9,

16
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Thus § i
from ong orthogonal soi of axes to another.
matrix C 1¢ obtainecd ag: ’

n orthogonal matrix and performs a transformation of conrdinaves
Then, the diagonal covariance

o 0 A, O
ay A,
C=PcH = (3-5)
0 o¥ o)
L. = b
Furt...rmore, the new coordinates &', %’, ¢, . . . associated with &
are relatcd to the old coordinates §,% , & , + . » asgoolated with € by
gr = Q'E + ¢m'7 + Qj’:g e
(3-6)

?l= Q.'sax§+ ¢Pz77T ¢23Z+” e

and it can be seen that each @.. specifies the component of an old coordinate
along a new coordinate axis. %%us, esach element of the eigenvector matrix is
the direction cosine between an 6ld and new axis. For example

@, = cos(E,%) (3-7)

In this way the eigenvectors exactly specify the orientation of the -equiprob~
ability ellipsoid associated with C.

17
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L.0 EBIGHVACTOR ATGORVTIMS

The .ot orbison DL quaniivies ¢ use in the Guidance Error Study are
the vaprisures . »i covariances of position and velocity errors from a reference
trajectory. a. pointed out in Scction 2.5, these quantities are grouped in

an array c..ii- 1 the covariance matrix of errors. This complete 6 x 6 matrix
is writh:or - .

O O, O, Gi T, Ok |

7

Gy Ty Ty Opi T Oy

Cw™ (2-22)

Toy G5y Tie Ty T5 O

e iy Tz T CTes O

L.

It <is observed that 066 contains a total of 36 elements, nine pertaining solely
to position, nine pertaining solely to velocity, and the remaining eighteen
expressing the correlation between these error components.

If we are concerned only with the errors in position without regard to the
errors in velocity, then it was shown in Section 2.5 that Cgg should be parti-

tioned into four submatrices and only the upper 3 x 3 submatrix of position
errors rétained.

P

[
C33p } Csapv
P (b-1)

i
C33 vp { C 33v
|

e

-

Similarly, if only the velocity errors are considered, the lower right 3 x 3
submatrix is retained. This procedure was justified in Section 2.5 using

the idea of a marginal distribution; thus, the position and velocity submatrices,
CB3P and C33V’ can be calculated from the marginal distribution funections

f‘]_(g:??:c) andf2 (E,ﬁ ,t)°

Three dimensional error volumes are associated with either of these sub-
matrices. One particular error volume is the equiprobability ellipsoid discussed
in Section 2.6. It is recalled from Section 3.0 that the orientation of this
ellipsoidal error volume is given by the eigenvector matrix §. A procedure
for computing this eigenvector matrix for the position and velocity submatrices
will be presented in Section 4.1.

18
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If sovh the position ana velocity errors are important and, especialiiy,
it .se correlation between posiltion and velocity errors is significant, the
entire covariance matrix musht be considered rather than the two submatrices
separate'y. Remembering thal each elemrnt of the eigenvector matrix is a
direction cosine, the elgenvector mabrix corresponding to 666 can be written:

- -

coS(tE) cosfzk) . . - - . cos(E't)
cos(En) coslzg) .- - - cos(i)

cos{kl) cos(@k). - - - - cosfey)

P-= . (L-2)

cos(kf) . - - - - . ..cos(iY)
COSET) < e cos(ty)
cos(t g e - cos(t’y)

X ]

Since only three orthogonal axes can be pictorially represented, § is
~artitioned in the same way as Cgg in Equation (L4-~1). In this way a simultaneous
set of iwo three-dimensional coordinate axes are obtained for the position and
ve ' oclty errors. It is imporitant to note that these coordinate axes are different
woan those obtained from the submatrices of position and velocity.

The axis system appropriate to the separate covariance submairices un-
correlate the three position errors or che three velocity errors but do not
uncorrelate the position errors from the velocity errors. On the other hand,
the 6 x 6 eigenvector matrix calculates six independent (completeliy uncorrelated)
errors in position and velocity. Thus, by taking the upper left guadrant of 0,
a new position error axis system is specified such that the resulting three
position errors are all uncorrelated and, furthermore, such that these position
errors are independent of the velocity errors. Similarly, the lower right hand
quadrant of Equation (4-2) would specify a new velocity error axis system such
that the resulting three velocity errors are all uncorrelated from each other
and fro:: .he position errors.

The usefulness and importance of the 6 x 6 eigenvector matrix can now be
appreciated. A hand computational scheme to obtain the eigenvectors appropriate
to Cgg will be presented in Section L4.2.

Li.1 Three-Dimensional Submatrices

If the correlation between position and velocity errors is not cunsidered
©o be significant, the two submatrices contained in the 6 x 6 covariance matrix
can be diagonalized separately. In this way the orientation of both the position
and velucity equiprobability ellipscids is obtained such that the posiiion errors
ar- uncorrelated from each ocher and tne velocity errors are uncorrelaved from
gach ouner. However, the resulilng pooition and velocity errors are otill
correl..ed. With this last restriction in mind, the eigenvector calculation
scheme will now be presented.

19
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The 5 x , cubmar i of posiiion errors is written

C:i'j,,: O’;C (J’;J C);,; . ()-1‘3)

and the aigenvalues' As A,, and A, are considered to be known. Using
Equation {3-2) Colli = Ni

i

CEN) O G ¢,
O O7A) Oy, P, | =0 (L-L)
N T (OF A) 423

i I

vwhere i = L, 2, 3. Then, by solving this set of equations for the eigenvector
elements, we obtain

Ni Tre L Oy Oy ~(T2-2NO0F-A1) |~ O
?f_"f;: __ro;t O, = Tt (O-Ea" A
Ni ™ | Cgr Ok = (OF= AT, - )

=

@i _(Op-2i) [G;go;;g - Tps (2= N) ]_ T

(4-5)

z[®

The norm of each eigenvector is unity; the constant N; is obtained using the
identity

i:a + g.i + ﬁ:’} =1 ()-L—é)
In each case the positive square root is taken.

Finally, Equations (4-5) are equally valid (with the appropriate changes
in subscript notation) for the 3 x 3 submatrix of velocity errors.
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o2 Si:-ccasioral Govariance Moordx

L

If che corveiation  etween e throe posiition errors and the arer velocity
errors -5 of importance, then the catiy covar. -woy malriz of erross must be
diarzona “zed to determine the 6 x O elpcnvects wotriv, Uy partitioning this
eigenvecior matrix, new coordinate akerc ~w pasillo. or veloeily are obtained

for com: .otely uncorrelated errorc.
The ralculation scheme for Lo 6 = ¢ eigenvector ma: ire

extension of the formulation in Sectior 4.1l. The six eigeava.ues Auiwoaough
- ~ . i A 3ERY - - <
Asare considered known and the equation, analogous to (h-L), is written

(Gr=A) Ty T T T O

RS

f

7E (0:72- A-) O;y O;E O‘?;? 0-7;3’

2

G G, 0% O Tz Org 3
| =0 (L-7)
T G G (OF-2) G5y Oy

4

13

T gy Tix Opz(T5-A) Oy

T O T O CislGi-A)

L . L -

-

where 1 = 1, 2, 3, . . . 6.

The scheme is obtained by solving this set of six equations in six unknowns.
The scheme is long and tedious and the computations are performed in the fol-
lowing s.eps: -

STEP 1: Zu = (T*- )
where: i denotes the elgenvector and associlated eigenvalue
i=1,2, .. .6
J denotes the term
JTl—s¥ = 4—¢
j=2 = NN ——
j=3—>F J2 b6 ——¢

2L



STEF 2:

SUEP 3

Aiq

AHD

AHI

AHZ

€Y
©: Bi
6: 7
¢ 8
€ &

6,6

<3

. B
7Y,
7Y

i

i

f

= i )
’Z;g O )
(O3 Tgz = ). On)ot
(O T = )., Ok)
(Og Ty - Z;., Zis) L
(Cpy T - 2., Tge) &
(G5 O = X, ) o
(Tes Tgs = Loss o
(Cfs Tre = 2ou Tg) 04
'(Oz"t: e = 2.0 Ong) i
(Tgs T = 2.1, T3) o
(C53 Trg = 2., Txa) %
(T Ty = L. O o
(Cps T = Ludaid &

!
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STEP U4
STEP 5: D
@..
d,
STE? 6;
Biz
Bis
y.elding ¢i 2

n

BES

Bis

Bis

B'aé

- G

- Ci

T
i

' i,7,+0,6
- A A = Ay At
Ais Aiz = Ais A
- (‘{\*\'-;0 A ~ AZJ Ain
As Biz = A A
= Aio A~ Ai, Al
Ais Aiv- Aia Al
- Air Air - Aig Aiﬁ

Ais Air =

H

| I

Biz - Bis

Ais A

Ais A

A“ Al’5 B”

[ By — B;;Ga] =CiH

[ Bic — Bisq‘] =

%442

Aid o

122)-(%

-Ci Iy

Als 8:
Aiz & } Bia

A.se
Ao

e [B.a—s;,o;} e
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STEF 7: do= Yev /oy = 987 /¥
i i
di = YE g ,/ E:" dis = T ¢ / 57“

o2
Q
Ny
%
~
g

STEP 8: fa = dia= Ja«-%.; fis = di - d"%
'F|a = J:'s - Jil% fis = Aag - Jn-og(-';-
STEP 9: B;q = {'F'«B"F“ “‘2%} —{ﬂz*(il %";5;}8'.3_

Biuo = {{M‘ i %} - {'F.a"'rn %}Bn

yielding

¢” = "Ci (Bim - BHG'-) =-C; L;

STEP 10:

Now, Gy, Hj, J;, K;, and L; are known numbers; we solve for C; as follows

B +BE + B~ DG+ Dz + B =

C,?(L?E-PK;:*J;? +H+GEvr 1) =1

The positive square root is taken in each case. Thus with a total of 54 cal-
culations per elgenvector, the six eigenvectors can be calculated.

As a final note, both the three and six-dimensional schemes have been
verified using the digital computer.
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> BQUTPACHABILITY RLLIPSOLDS

Py

In o='s statistical treatmeri of performance errors due bo guidance hard-
ware erro-s, the Gaussian distribution of these performance errors is a funda-
menial a.cumption. It has been pointed out in Section 2.6 that a famiiy of

equiprob - Lity ellipsoids can be defined from Lhe n-dimensional Gaussian prob-
ability « sity functiorn by simply setting the exponential argument of this func-
sion to . cownsioat k.o This constant is termed the equiprobability parsreter.

7 Jhe iauerration of .o provapility density over the n-dimensic.al «. .lpsoidal
voLume can oe accomplisied analytically, the total probabiliiy P, can be uniquely
related to the parameter k. In the foliowing section, the steps involved in

this integration will be presented and two closed form expressions relating

P, to k (valid for n even or odd) will be derived. In addition, Section 5.2

will show how the lengths of the ~illipsoidal semi-axes are related to k and
Section 5.3 will present two simple equations for the volumes of eguiprobability
ellipsoids of either even or odd dimension.

5.1 The ' uiprobapility Parameter

The ..-dimensional Gaussian probability density function (see Section 2.6)
1 s the 1 performance errors Xy, X, X3, + o+ o+ Xp is written

.

o) [ N - LT
f(xh)—m' exp ( 3 Xn Can Xn (2-25)

The task at hand is to integrate this expression over the n-dimensional ellipsoidal
volume.

m .
First, we recognize that ﬁgl G n“l‘ig is simply a quadratic form. If this
quadratic’ form can be made canonica?, then the integration can proceed. By
using the eigenvalues A,, Az - » - - - 2. and eigenvectorsﬁi,gxy.....uﬁﬂ

of the covariance matrix C,,, an orthogonal transformation of coordinates is
performed yielding

Vo = 0" X = DT X: (5-1)
r?L‘ O
and Cnn= Can P = 7\1- (5-2)
. O .l"
A, i
e | 20 (5-3)
.- nn - " 5"3
O 4,
Now, equating probability elements,
{(?:) d?rcszclxn =f(-77:) ‘J‘ dy,Ayz"‘Ayn (5"’4)

25
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where [P 13 Tho Jrcoirian determinant delined as
!
..‘:?_A:..‘ ..‘Zﬁi . . e . 2K,
Iy, Iy Pvn
2Xy Fxw 9 X2
&y, Irya * "‘““a.,h
!J’ - ) * * ‘J')’)
FHen D Xn ) 3 Xa
Iy, 8Yz 8 vn

Bu % * @ ¥, and, by using Equation (3-L4), we obtain

¢" Qzu """ ¢m
¢u ?u ..... ¢nz
|7 = ' cl o= (5-6)

Chn = (P & nn (I)T
Cn'nﬁ —"-(@ ann (‘-PT)-, = (I)En,;' Q)T (5 )
-7

Xn ConXn = (Gya) D Cna'd" O ¥

g -y et

= 7’;1 Eh\'\ Yn

Now, using (5-3), the quadratic form can be written:

T N —ny y‘ yz 72
Ya ConYn = 5 + L24.... o s
A ;\2 7\n \5 8)

Referring to Equation (2-26), the definition of equiprobability ellipsoids is
simply '

Ko CrnXn = k = Ya Con ¥n (5-9)

20
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4 £ % S ey for L o~
Using Equations (¥-o0), (5-7;, and (5-8), Equation (5-l) becom:s
- f:\}:)dyl dy_' “ - ._:yf,. =

o e N A R L . (5-10)
Geominiant 1P Cal R R dndydy,

On. furiner basic simplification can be made:
\ . «
|Con = [@ Con 7] = |DIIChn||P] = [Chnl
and by (5-2)

IE.""'I = 7\:?\1"')“1

Thevefore, the final canonical form to integrate is

feymdy, - <dy, = m e’ dy, - -+ dy, (5-11)

Now we seek to integrate this subject to the constraint KY; .- 4 1?17?: =
this constraint is simply an n-dimensional ellipsoid with semi-axes Vki/, VKAz,
. <K A (refer to Section 5.2). In order to eliminate the dependence on
a <vecific covariance matrix ( A, Az, --- ©, An ), the coordinates are again

transformed such that the n-dimensional ellipsoid becomes an n-dimensional sphere
of radius 1. '

—-—"),lz _.__.Y: Y!’lz 2 2 2
ot R Yt Ean Bt Zawecaaig =y (5-12)
Then
Z ! NI P R
F(i)\L| c‘z\dga' “dg" :—"\[(211)7‘7'_/‘2.‘.7‘“ e a(z _-!-i.' +25) "

VEA, dz- VEk Az de creNKAnR dzn (5-13)

e - h cz Zzi‘ - ?_:) -
e ¢ FEE daidz, o de, (5-14)

27



TM-5L/30-L2

where

!in = ll"mv}x)z cer A

Since vhe rectangular coordinates #: are not independent by -rirtue of
Equation (5-12), the n-dimensional sphe ical coordinates r, 8y, 65,. . . Bp.1
are intro.inced. These are defined as

£, trcose,
Z, =rsin9Ccos g,
£, 2 rsing sin 9,056, (5-15)

2, =rsmgsing,---- sing,

Jaccoian in this case is

(5-16)

Tone o n-3,
i‘r"-ea‘ = l""'Sln"’e‘ sin 91_ Lot S’new—k

and the appropriate limits are

(0<r =1)
(0<8:,+,0n, £7) (5-17)

(0< Bn- = 2’7f)

.Thus, the total probability is
o KV _kr ce
Pﬂ(k) (2"'\") NSz [COS e;"s"‘ 6, 05 62

+ 51°0, (cos*Bz ++n - - & 5'“39";'))”')]

(5-18)

h-3

xrn«rls,n“-zel sin Bz - 5InB,., drdelde‘:_.. C‘G.,\..;

n >

28
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which recuces .o the » independent integrals

! 'ﬂ

. e e _:‘r‘ ,
PJM:YE#%ﬂ]”r dl J sin """ e.de,

(5-19)
W T 2
X[Sinn'Jea Cjea 4 "fs'nan-.a de"‘i[de“,, 1>
For n= 2, 3, and 6, this formula yields
! Kr# & ke
P (k) = [ e drf do, = [-e ™ (5-20)

P, (K) = ,/g:f Fre T 4,
[jf P ds-vE e 7] (5-21)

But the integral can be cast into the form of the Error Function erf(x) =

x .
= T,f,:fe—uzdu Then
B(K)=er+‘(\/-;'—‘_)- ‘[;Zl_q__‘ﬁ‘e"‘&

. (5-22)
Pe (k)= 1-€ "2 Clegie v §k2)

Finally, by mathematlcal induction, Equation (5-19) was reduced to two general
formulae, valid for any even or odd n greater.than.l.

e & I '
Pl = 1€ L Ty naaee (5-23)
- “‘3) I )
K/fa 27 J! Jv 2
Palk) = erf (JE ) -2 e (5-21)
REL-) J
h=3,517---
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In i oo, wWo general forriae, Fouations (5-23) and (5-2L) hav necr
cevoved @ b v ctale the total provabiit bty o to the equiprobabil. .y pa.wwnter
. shoulw e w ed that these exp -.sslon: arc independent of the covar.. nee
ix U, and, hence, vilid for iy covariance mabrix.

However, 'he usual ~ise of inmuerest is to pick k for a given valu. of Py
Jinee the Lorms of Bquations (5-23) and (5-24) do not permit the nnaly: .c aptnrmin—
»i;wn of k as & function of Pp, Fijmre (5.1) is presented. This figurc is a
ot of P, (k) through Pg(k) versus k; the value of k associated with any value
ol “a cmnlbe read dlrectLy from the figurc. It should b notes =t ¢ familiar
T, 2, and 3 "sigma" levels are given by k equal to L, kL, and ¥ rosveciivedy;
i.e., a square root relationshlp holds. In addltlon, Table 5.1 gives the values

of k associated with a wide range of probability levels for the three-dimensional
case.

30
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VABLE 5.1

SALT LD Y LT, AND BQUI PROBABILITY PARAMETER k

Py (percent)
0 | ‘ )
19.875 (LO) . 1.000
20 1.00k %
25 1.2:0 ;
30 L.uy19
ho 1.867
50 2.365
60 2.943
70 3.675
73.85L (20°) 1000
75 l.'109
80 L.652
85 5.326
90 6.250 |
95 7.812
97 8.967
97.07L (307) 9.000
98 i 9.910
99.% 12.870
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5.2 Lengbhc o BLLivsoiuct Principie Ax o
Equiprobabili, » ~tievn ot v defl ed from the Couscian pros silicy
density funcuion toeoash Lo use o the < quiprobabilivy prvameber ~ . The

exponential o gumed ., ’fo fan”t €, be simply set cqual vy . Reforr.ng o
Equations ' %-8) and (©~9), wo have

- ol e "t :‘: Ly e v, 12 «‘? , §
v C l’\f: X no - 7/77 i LN )’"s —i'" + ji—z ¥ NS ;n,, fa {5_25)
The general form for an ellipse of 3 dimensions is
2 2 Z
7 - Ya_ + Fa_ i (S__26)

cz

where a, b, and ¢ are the lengths of the principal axes. In n dimensions, this
form expanus to:

\Z 2 2 4 2

Compacing (5-25) and (5-27), we obtain

s ykA, ; b=yKAz, C:=yRAs; - --- (5-28)

for the lengths of the principal axes of the equiprobability ellipsoid.

5.3 Error Volumes

The two unique relationships between the total probability P, and the
equiprobability parameter k (for n even or odd) were derived in Sectlon 5.1.
Gorresponding to each equiprobability ellipsoid specified by k, there is an
associated ellipsoidal error volume. Two general eguations for these error
volumes, (applicable for n even or odd), will now be derived.

In general, the n-dimensional error volume is:

[ff dys dy, dy, -+ dys (5-29)

where the integration is to be carried out over the ellipsoid specified by:

F3 2
Y - Va2 4 Lo Y -..)

K’Al R}Z K A
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Forlcsing Scowict .4, the cuiipsoid 1s transformed into an n-dimessional
sphere o. radius L by Bquation (5-12). Then:

)
Va = K™ me!ff--j dz.dze day - di (5-30)

Here we .nve used the fact that {Cnn} s bhe so-~called generalized variance, is
simply the product of the eigenvalues.

Next the n-dimensional spherical coordinates given by (5-15) are incorporated.
We obtain

P 2y
wg .
1\]“ = k m'//[_‘_‘( .’_nol S)}'lv’-ze, SJWH‘YGZ‘__a
B e

(5-31)
Sin en_a dw CIG,c{QE .. demz den-
This obvi  :s1ly reduces to n independent integrals and, for n even, the general
form car. .e shown to be:
w/2 .
Vn - (THJ JChnl ‘; h = 2,4_,6)-'~ (5'_32)

(n/z)!

If n is odd, 5 is a fraction and <§)! must be written in a more appropriate form.
We incorporate the Gamma function Gefined as follows

T (wm) = (m=-1)!
then [ (wm+1)= (m)!

setting m = %, it can be shown that

(g_)l - r‘(")—:T +t) - 1-3-5‘;"7'""’1\/",.? (5‘33)
22
Also
o3 e 5.7 i = n'l (5"3)4)

2% (4)]
“hus, using (5~33) and (5-3l), the ellipsoidal volume for n odd is

A=D1 A NG o B
V, = z - 22, n=3,5,7, - (5-35)
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8L Kamp Llus,

—
Vi T VIC g

; Lo e ST
Vs =5 e Vs

L

ol

Ve =

It should ve noted that in all cases the cilipsoidal volume is directly propor-
tional to the square root of the generalized variance.

Pinally, for preliminary estimates, it is shown in Section 7.0 that s
conservative estimate for the error volums is obtained by simply neglecting all
“he.cova: . nce terms in Cpp. This estimate 'is conservative since the resulting
eneralizes variance is larger than the actual quantity; hence, for a specified

scbability, the associated error volume is larger.

For example, referring to Section 2.5, the generalized variance can be
written in 3 dimensions as:

[Cosl = Ty T 0 (1+2R, Ry Ry
Z (5-36)
Ry PE*VQP“)

and, it can be shown that |033] reaches a maximum when the errors are uncorrelated,

1.7,
’ PE7,=P§§=P_,7,;=O_
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6.0 PROFA™ "7y OF 19 FiNG A TARGE WINDOW

hLiss:on success is generally ¢ 'ined in terms of "bhictin:" = . well wn
target or 'window". For example, in the cace of a ballisi.: misul .., we 3~
concerned with the probability of ‘mpact within a speciiic target srea. Q3
order to rtermine this probability 1t ie cocvessary to integrate un app.oopraate
probaiili . density function over L.e arca. ‘

o

3

Lte -wetr . the boundaries o chie coopot impact area o gl
in terms ' a position .nd velocity "window" at "cut-off". oo s ore viie
missions, in genecral, -his concept of "hitting" a prescribed "window" ol position
and veloci y conditions is employed. The general problem of determining the
probability of success is then one of integrabing joint density functions over
the appropriate dimensions. The boundaries for this integration wilil, of
course, depend upon mission requirements.

In t* application at hand, the probability density function is assumed
to e Gaussian, and tiherefore the problem is one of evaluating definite integrals.
Numcrical procedures for the evaluation of such integrals by digital computers
are prese:. .od in this section. Some typical three-dimensional "windows™ have
been selected and procedures are formulated for computing the probability of
"hitting" these "windows". These "windows" include a sphere, cylinder, and
rectangular parallelepiped, with variable dimensions; these dimensions may be
chosen as either scalar components of position or scalar components of velocity.

6.1 _ntegration Scheme

A five-poinc Newton-Cotes formula (see Reference 5) is employed for the
numerical integration of the definite integrals. The basic integration formula
is written

Xa
j 30)clx:§-§(73o+323,+1232+3233+7ﬁ4)+€ (6-1)
Xo

where g,  g(xg), gy = glxy), g = glxs), g3 = g(x3), and g, = g(x),). The
coordinates X5, X1, X2, X35 and x), are equally spaced on the integration
internal h. The error tefm € is given in Reference 5 as follows

€=-28h oV (6-2)

where fV% is the sixth-order finite difference in the values of go0s Els €2
g3, and g),-

The selection of this five-point formula facilitates the use of an auto-
matic covergence check which involves multiple passes in the integration. In
each successive pass, the integration interval h is halved. Since the coordinates
of “he fives points within the interval h are evenly spaced, resulting in an
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. v v Listed in this table are computed from
Equation (6-L) usins, 1w 1» wesl integration scheme described in Section 6-1L.
The error standard . od in ohes compubtation is ESTD = 1 x 10-7.

is given on .0 3%,

6.3 Two-Dimens:on. Target Windows

5

An c¢xmmple o o wWo-tsaension L obroorebt window would be the in-act area
of a ball: dc missiie. “ue voncspi of circular probable error (L E) ..
generally used in 'his regaru. Vhoe CPE i acfined as the radius -7 a ~ircle
for whicr .he - . 0 serscout wpoobabilis Ly Jhat bhe missile will ap o +ithin
the circle. .lteriave.y the CPE concep 1s generaiized by considuring -ne
probability that vhe missiie will impact within a circle of radius R.

In -rager to study this exampie, we may use the tracking staticn Cartesian
coordina:- system described in Reference &  The tracking station locavion
is regaraed as & target. Scalar components of the target miss disctance are
measurec . long the u and v axes of this coordinate system, and the random
variable - is defirsd in terms of the random variables U and V.

The oint probability density for U and V is written

; T o 1
'F(LL,V): Z"ITG_IOE m expf_'z'L Xz CZE‘ XE) (6'5)
iz

where the subscripts 1 and 2 would refer to the u and v coordinates, respecitively,
in the present example. The exponential argument of Equation (6-5) is written

7T - o [ w-m)? e (U= ) (V- o2
Xa CEEXZ - = ezz [_(_ a—‘-z -+ Z_PZ (lg_lg?a)(vma) o+ (VO_{?ZR) ]

2
Transforring to polar coordinates
u = rcos@

v = rsing@

and equating probability elements yields

Feuv) dudy = Frg) 1Tl drdg (6-6)
= plnd)dvdg :
where |Ji is the Jacobian determinant —%—%ﬁ—% .  Performing the required

substitutions, the probability density, in terms of polar coordinates is written

. ,
Mh¢)=2"m0;%7ﬁ\GXP[HR.+NszN2¢

(6-7)
+ Taka SINZ2% + v ky Cos g + vk s'ng +k5]



even muliirle of subintervals, the previcasly computed data poinue are used
on e¢ach «ubwequent pass.

wWhea tie abucii.s . ats of ceorroargerce srror is less than soie sperified
small vai.n, cailod he civor Louncard {ESTD), the final answer is obtained.
The conve.=ence arror .o defined au the difference between the final solution
and che i - v ouy souw.owon chab occws 1o the multiple pass inbegrn.ion process.
The erro- .anaecd VaYiBd) 1o the ratio of this difference in succeosive passes.
Previous - wnerieawe vilh this multiple vass integration scheme ir<” zat~ that
th o Jina onswer shou o ve aceneable to « 0 ohin two or thrwo btime. 2 o “fied
Bz i, Too small a vaise for ihe ESTD can, however, result in excc.slve computer
tine.

To :sure tpat pertinent Jcatures of the integrand g(x) are aot missed
©; . lar - step size, a meximum stcp size check has been “ncludea in the inte-
gration wo~cedure. An obvious cholce for the maximum integratiarn ctep size,
for the pr. .eat application, might be the standard deviation of the prohapility
density function. A minimum step size check is also employed to avoid sxcessive
computer usage.

6.2 One-Dimensional Target Windows

There exists several one-dimensional target windows of interest. for
exanple, consider the flight path coordinate system and the system of orbital
elz.cnbe described in Reference 6. In the flight path coordinate system, the
s asuren.onts of total velocity, flight path angle, azimuth, or local a. ilude
sre quanvities which may independently provide meaningful measures of perlcrmance.
Similarly, in the orbitai element system, any one of the orbital elements could
be the sole quantity of interest. The one-dimensional, marginal probability
is written

fe) = f (—-———*xc‘rm

(6-3)

e P %)

where t is a standardized random variable that has a zero mean and a unit
standard deviation. The random variable x is the error associated with one
of the measures in either the flight path coordinate system or the system

of orbital elements. The mean m and the variance ¢ ?of this 7 dom variable
can be obtained by the propagation proceaure given in Reference ..

X - m

Tablies of the probability P( <1t) for a one-dimensional Gaussian
sistribution are given in most textbooks on statistics (see Reference 7,
pages 209-213). A similar table, for the following integral:

P(-t < 2‘...5‘_.@ < t)= E[exp(‘%—z) dt (6-4)
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0 J.0 2.4 0.95360L50
0.2 0.15851942 2.5 0.9875806%
0.h 0.3108L348 2.6 0.99067760
0.6 0.L5149376 2.8 0.99488971
2.8 0.57628920 3. 0.99730019
L. 0.6826891,8 3.2 0.99862570
1.2 0. 76986066 3.4 0.99932611
1.b 0.83848667 3.6 0.99968175
1.6 0.890L0139 3.8 0.99985529
1.8 0.92813935 L. 0.99993652
2 -. 0.95h49972 5. 0.99999936
2.2 0.97219308 10. 0.99999992
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The probability that the impact errors will be within a circle of radius R is

now written

R 2w
P(o<rsﬁ)=ffpc»»,;zs)cl¢dw

R

= Kfr H(r) exp (\»2 Ki)dr

o

1no

{6-8)



where

exp (i)

K= 25T o, /=p

4

H(r)=j exp(r*k, Cos2g +rrkysmag

a

rKe 05 @ v v ks sind)d e

A digital computer program has been implemented for the computation of
Equation (6-8). Typical results obtained from this program are presented in
Table IT, page L2. A value of 1 x 10~7 for the ESTD was used in these computer
runs, and the computer time per case was about one minute.

If one considers only the 50 percent probability definition of the CPE,
the results presented in Reference 8, page 473, may be used to svoid tre
expense of a digital computer program. A curve of CPE/ 0» versus o /0%
is 7iven in this reference and a linear approximation relating the CPE to o2
anc. o6, is established. These results are valid, however, only when u and v
are uncorrelated. No attempt is made in the present study to extend the sim-
plified results of Reference 8 for correlated variables and other probabilities.

This extension could be accomplished by using results obtainable from the digital
computer program.
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WMPU L ReSULTS

SROBABILIC: 7% TR DHAGH. ART ALTHIN A CIRCLE OF RALIT. 2
P’LQ Ty Cr? s m , ns sadiusg Probabiii vy
. ) 1 1/ .’J/}...L‘; e
2 0. 1521466
0.5 L 3 2 1
8 G.8732792
10 0.95095075
1. 0.393L693
LJL77hL 0.L9999L1L
665 0.7L99545
L 1 0 0 2. 0.8646646
2.Lh77 0.949994,2
3. 0.9888909
10. 0.9999998
1 0.0818923
2 0.396L990
3 0.7856377
0 1 1 2 0
L 0.96586L9
6 - 0.9999,32
10 0.9999996
3 0.L2179 -8
0 L 0.4 2 3
5 0.96934L7L
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6.4 The Thrc . Ymensional Integrriions

Tt has vren pointed oue oot we are concerned with the provab..iity of
"hitting" threc dimensional "window:" ol either position or velocity errors.
The specific cases considered here are

(1) 1 epiwre’
(2) - cyiinder
(3) a rectangular parallelepiped

The probability density in aii cases we assumed to be 3z threc-dimensional
Gausszian distribution cantered at & non-zero mean. This disitribuiion may be
regarded s wi.her a marzinal distribution of position errors without regard for
velo: Lty rrore or a marginal digtribution of velocity errors withoulb regard
for 81 on errors. It is also assumed that the errors are associated wlth
meas. ~em¢ s in a Cartesian reference frame.

The ‘ollowing derivations are applicable to either a marginal distribution
of v sition errors or a marginal distribution of velocity errors. For convenience,
the .otation is generalized by the use of subscript indices; the subscriptis
(1, 2, 3) will refer to c¢ither position errors ( %¥,%,¢ ) or velocity errors
7,8 ), respectivcly.

From Bquation (2-25), the probabiliiy density is written

!

F(X) * feaserees exp (-5 ¥; Cyy Xs5) (6-9)

where X3 is a column vector (xy, Xp, X3)T of the errors about their mean values.

Specifically,
X = el“ms
X2:€‘2‘m2
X3 = £4- m3
whire ( €1, €, , €5 ) denote either ( £,7%7, §& ) or ( £, 7 4 v. If

position errors are being considered, C33 is the upper left quad-int of (2-22);
alternately, if velocity errors are being considered, 033 is the Lower right
quadrant of (2-22).

Expanding the exponential argument of (6-9)

-~ T

ZL Xy Css.‘)?a: kté?'* Kzé: '+.k?€: tKa €€z ks€i€s

(6-10)
+k‘€2€3 +k76| r kaéz + Kqég-i‘ Kio

L3
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+ (GiO% — 7' Tas) ms |
*L'[(O;O;a' TnT, ) mi + (T, 0,- G°a.,) ma

{Cas|

' (O.:zolz__ OT:)V"‘J] ,

"'T‘g'(K7 m, ¥ ka*’hz"’kqma)

6.4.1 The Target Sphere

The familiar circular probable error (CPE) concept has been discussed in

Section 6.3.

It is now convenient to generalize this concept to a spherical

probable error (SPE). Consider a sphere of radius R centered at (aj, ap, aj)
in the ¢ €, ¢, coordinate system, as shown in Figure (6-1).

It is convenient to transform to spherical coordinates,

Y, = rsin¥
Y2 = Fsind cos ¥
Y3 = ¥ Cose cos ¥

LL
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where yy, yo, ¥y W 200 tanmutae coordinates aligned parallel to the €,,¢, €,
coo: iina. s, bu’ «i. ke ociygin Lranclobtoed to the sphere’s center. The %,
Xp, x5 coordinaves .« g .tion (6-9) are then written

X, = r sin'y - (Yﬂ\-—'a.x)
Kz = rsinecos¥ - (m,-3,)

Xg = rcosecos¥-{(myz-ajy)

and the exponential argument of Equation (6-9) becomes
Cas' Xy = 12 [ Kisin*¥ + k, sin®6 cos?¥ +« k; Cos?p cos? ¥

+ Kasing Sinfcosy +r ks Cos@ sin¥cosp

(6-11)
+ k¢ SN COSGCQSZ)”] + r[k7 siny

+rg SIn© cos ¥ + kq Cos @ c_os}"] + Kio

where Ky, K,, . « . ., K5 are obtained from Equation (6-10) by replacing m
with my - ay, mp with mp - a5 and m3 with ma - a3. The probability that the
errors are within a target sphere of radius R is then,

\/QZTI')"" [Cas]

R %
_ ex (Klo)
P(o<r<R) = ~£———fr‘[cos?’exp(n,r?s.m25”+l<~,.rsm>")

iy

24

(6-12)
X GXp[rzcasz}”(Kz Sin?@ + k3 Cos2e + kg sing Cose )

(-]

#risin¥cest (xisime + kg Coso)

+rCos¥ (ks 5ing + kg cose)] dedy dr

L5
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Figure 6-1 =~ A Spherical Error Window (Target Sphere)
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A di .21 computer program ba..d upce che formulation of Equa: o ' H-:2)
hewo . cen . oiemented.  dypireal resuivs of' Lhe computation are pror: wsed o
ToL e ITD, pope 48« The compuber weme roeiuired for these compuiii ons o

at. v exc esive, and 1ln some caces -t ccuid be prohibitive. For an erc
cor, «rgenc  standard (ESTD) of 1 x LO“h, approximately four minutes of ¢
time per ¢ .se was required.

’:

-
{

sputer

These omputer results indicate tha' a more sophisticated inte -rat: o~
s7» & is ~ccuired to reduce compuioe~ rur time. A scheme whic) aat o
scauces the soeep size around the peaiks ol che distribution and incooase. wne
step size in the talls of the distribution might be considered.
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6.L.2

s oa cylinue:s o8 cadive o, cencered at (a~; Sy G.) lnotln € T,

Coneiae e .
- AR X T . “~ - . -
system, as shown in Firare (€-2).  The eylinder ig oricnted & o~

T
coordinai: )
such :tha: .ts figure axis is parallici bo the €; coordinate. This s no:
restriction on the orientation of the aciual targetl; the covariance propngation
technique described in Reference 6 may be used to define the means znd covariances
in an € , €,, €; system compatible with any prescribed orientation.

-~

e i B 4,

Y

€,

3y

a,

Figure 6-2 - A Cylindrical Error Volume (Target Cylinder)
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o Lyensfocie to cyiindrical coordinates, where

Tt oo mony oo
y‘ - SN )I/
/'6._.1.3)

Y2 = rcosy¥

Y3 = ¥3

The exporential argument of Equation (6-S) is then wrii .
= Kir2siH Y+ kyr2Cos® ¥+ el

=T -1
=5 X3 (33 X3

o~
i

! »

r—v

fvay
St

* e rigin¥cos¥ - Ks€zrsiny

+ Ke€srcos¥V+ Kypsinl

.+ ., Ky are again obtained from Equation (6-10) by replacing

where K., Ko, .

my with my - ay, mp with m, - ag, and ms with m3 - as.

The probability that the errors are contained within the prescribed cylinder
{

is written
- exp (Ki) exp (Kq €y +h;€7)

P"O<P_<R~X<E <{)
‘ ’ V(2 )7 ‘C 33{
-4

' R 2w
r 2k sSIN?Y + | 2y ny
xf[exP[r (k, n + ky Ccos + Ka st cos ¥) (6-15)
o o

# 1 (K7 SINY s Kgcos ¥)+ €, r(kssin ¥ ke cos¥)] dydyde,

A coniputer program based upon the formulation of Equation (6-15) has been
Typical results of the computation are pre;ented in Table IV,

implemented.
A convergence error standard (ESTD) of L1 x 10~! was used to obtain

page 51.
these results. :
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6.7 7 o e oo Paradlelepiped

“The or.entation ot the rectancular nariilelepipud w5 resiric..d susn
tha. the . .Jos are parallel to the axis system associuabed with the covar.unce
mato.x i crrors. This restriction may be circumvented by simply propagating
the ~ova.iances and means into the appropriate axis system. The dimensions
of iiis oox are shown in Figure (6-3), where L; is the lower limit of “he box
and Uy i. the upper limit of the box in the & dimension.

€z

i, et

!
]
| Vi~ La
]
|

/
/7 //ﬁ : €,
T/ |
L

—ne

Vi =Ly

Figure 6-3 - A Rectangular Parallelepiped Error Window (Target Box)
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The prouabii.: ha' the errors wil., pe concained sn uie prescribed box
is written

PL<E SV, Lac€, 2V, L3<€, 2 1)

i %

) e
s Sxp(Ri) [ oyp (1 €2 el)] exp (Kab] + ko €16z vHg€,) '
ﬁ“ﬂ»-‘—'rfj f T T e (6-16)

L Lg

Vi

Xf(Kgég*Ksé\€3+ k;ézég'bkq Eg)cl€;€j€2€lés
Ly

A c.mputer program has been formulated for the evaluation of Equav.on (6-16).
Typical results of the computation are presented in Table V, page 5L. 4 con-
vergence error standard (ESTD) of 1 x 10-7 was used to obtain these results.
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Pow SIFLTETED b OF PREAFORMANCE

The srevic s two chaprers hove precanied several formulations to okt n
cwniiatls @ probability levels associated wivh various target windows or error
votumes. The equiprobability ellicoid, hy virlue of its specializabtion, was
capable of an analytic solutlon whiceas the more general cascs of .wo-dimensional

~.les and three-dimensional spheres, cylinders, and boxes must be solvag
vueerical’y using the digital comnuter. However, for prelim’ o or oapir
e Simpl liied analyses, there are many simplified performance me- ey uvhial
e quite uselul.

In ¢.3 and 6.4.%h, the concepts of CPE (Circular Probable Error) and SPE
{Spheric.. Frobnb.e Error) were introduced. It will be recalled that these
meagures give the radius of a circle or sphere such that the cumulative prob-
ability of hitting these windows is 50 percent.

Instead of basing the eguivalence on the cumulative probabiliiy level,
the equivalence could be based on the error volume content. In this way the
radius of a circle or sphere of identical volume content could be determined.
The gene. . equation for the volume of an n-dimensional sphere is given by
Reference 7 as:

,rrv\/z ~n

Vo= T (7-1)

and, from 5.3, the volume of the equiprobability ellipsoid is

_("'TrK) V‘Chf\‘

N (5-32)

h

Equating the two volumes
an ,
:\[K’ {Cnnl ‘ n=2,3,4~,--- \7"2)

For the probability level of interest, k can be read from Figure (5.1).

The ellipsoidal error volume is directly proportional to the squére root
of |Chn| » Bquation (5-32). This quantity is termed the generalized variance
and is simply the product.of the eigenvalues

ICrnl = AR50 - An = Ot Oy Oyr =+ (7-3)
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I it were o uvenic.. - o so, oo equiviiient variance or standard deviziion
could be ¢ iorminea .o S covorance mabrix Cnn° We have
.2 . /n
Tae ¢ 1Canl
(7-L)
- t/2
Teq = [Cnl 727

In this way, a general notion of the spruad associated with the n-dimer..ou i
distribution could be obiained.

A very useful approximation exists for lcnnl' By Equation (2-22a),
gcnr\! A OTZO—; e !an[ (7“5)

where ifgff is the determinant of the correlation matrix.

Since error voluses, in general, are proportional to the square root of
the generaligzed variance, an easy way to approximate this quantity is sought.
By neglecting the covariance terms, [Cn,j ~ o7?0Cz"-------- ..., and, if it
can be shown that [Cppi s av*a?... .. the approximate error volume will always
be larger taan, the actual volume. In this way, if mission specifications are
met with the approximation, they will be met to an even higher degree by con-
sidering the covariance elements. Hence, the approximation is termed conser-
vative.

Thus, we seek to prove that
ICrnl = g*Cy* - - - = T TFF (7-6)

Referring to (7—5), this reduces to the requirement that

1Pl = ! (7-7)

Now the correlation matrix .. is an n x n symmetric matrix. Any matrix
this type can be diagonalized by an orthogonal transformation of the form

m

¢ p . @ where § is the eigenvector matrix formed with the eigenvectors as
no . . = S . . .
succesSive columns. Rach eigenvector ¢; is associated with an :igenvalue Ai.
Thus
X, 0 ]
A2
-~ 'rl .
Cre = @ Pnn(p = .. (7-8)
O -'1"
L A
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Under the »po of transformation, the .race and deterrinant wre iavariant.
Hence

'>\|+—>‘2+'."'*'/\Y\=Z7\i=y‘. (7-9)
and
|Prnl = 1Pnnl = ARz o Aw = T A (7-10).

Now we seek the eigenvalues such that | Pyp,| is maximum. Equation (7-9)
is introcuced into (7-10) yielding
n~ n-i
| Prni = T i (n =Y i) (7-11)

=1
fay

and the partial deriwvatives are formed

AMPrrl - - 2,000, hel 12
3 Aj ! J » ’ (7 )

de¢ sbbtain, s.nce all the eigenvalues must be positive,

n-i
n- A —22;=0 J=l,2,"',h-l y
Z ’ (7-13)
i#E)
2
The condition for a maximum is 5; Lfg”‘ <0 . In this case
A
2 n=t
Mol =2 a0 5 senz,eeene (7-10)
’ Cisd)
and¢ the condition is always satisfied.
Setting j = L, Equation (7-13) becomes
27\.4»)\21-—)\34-...-4-7\”_‘ = h (7_15)

and, subtracting the equations for j = 2, 3, . . ., n - 1 from (7-15),
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we obtain

> O
Ao~ Aa :‘O (7-16)
A=A =0
Henmce A,z A, = ++-- = Any = and, .sing (7-9), An= L. .ou5, by {7-10),

the maximum |Pnn| is unity; this is obviously the case only when all P]-_J- = 0,
In all other cases when P #0,{Pmi < L. Thus (7-7) has been proven.
‘ : " L Ve
Ar cozor volume ratio can be defined as [[ Cnnl /g -rri a; } 3 using
1 .
Equatior (7-5) this is equivalent vo|f..| * and ig simply the rasio of errer
volumes c-leulated with and without the covariance elements inciuded. Figure (7.1)
is a pl. of this ratio versus the correlation coefficient where, for simplicity,
all cor: .ation coefficients are assumed equal. Dimensions from 2 to 6 are shown
and it is observed that as n incrsases, the approximation indeed becomes more
conservavive.
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T: . Cormulasson of the maie maticat procodures for determining certain
statisiical measures of performaunce has oeen presented. The concepts involved

have been elucidated so that thesc measures may be applied with an accurate
understanding of their meaning.

The emphasis has been placed upon marginal distributions. For example
se three dimensional error volumes and target windows are applicable to studies
where ons is concerned with position errors without regard to the error that
may occur in the velocity measurement, or vice versa. An extension of the
present “ormulations might involve a consideration of "conditional"” error
volumes. For exumple, consider the problem where one is concerned with the
position error volume subject tc the constraint that the velocity error volume
be no larger than a prescribed value. Another formulation that could be
.luded is a procedure for optimizing the error volume with respect to tolerances
<. the error sources.

The procedures formulated for computing the probability of hitiing a target
window can be improved for more efficient computer usage. A more efficient
numerical integration process, tailored to the problem at hand, would enhance
the accuracy of the computations and reduce the computer time.
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